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Abstract

An implementation of the Model Based Parameter Estimation (MBPE) technique is

presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily

shaped, three-dimensional perfect electric conductor (PEC) bodies. An Electric Field Integral

Equation (EFIE) is solved using the Method of Moments (MoM) to compute the RCS. The

electric current is expanded in a rational function and the coefficients of the rational function are

obtained using the frequency derivatives of the EFIE. Using the rational function, the electric

current on the PEC body is obtained over a frequency band. Using the electric current at different

frequencies, RCS of the PEC body is obtained over a wide frequency band. Numerical results for

a square plate, a cube, and a sphere are presented over a bandwidth. Good agreement between

MBPE and the exact solution over the bandwidth is observed.
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1. Introduction

The Method of Moments (MoM) using the Electric Field Integral Equation (EFIE) has

been a very useful tool for accurately predicting the Radar Cross Section (RCS) of arbitrarily

shaped three dimensional PEC objects [1]. To obtain the frequency response of RCS using MoM,

one has to repeat the calculations over the frequency band of interest. If RCS is highly frequency

dependent, one needs to do the calculations at fine increments to get an accurate representation of

the frequency response. For electrically large objects, this can be computationally intensive

despite the increased power of the present generation of computers. Previously, Asymptotic

Waveform Evaluation (AWE) technique was applied to frequency domain electromagnetics

[2,3,4]. In AWE, the unknown current is expanded in a Taylor series around a frequency. The

coefficients of the Taylor series were evaluated using the frequency derivatives of EFIE. From the

Taylor series, the electric current distribution on PEC body was obtained and used to calculate the

RCS.

In this report, a similar but more flexible method called Model Based Parameter

Estimation (MBPE) [5,6] is applied for predicting RCS of the three dimensional PEC objects over

a wide band of frequencies using Method of Moments. In MBPE technique, the electric current is

expanded as a rational function. The coefficients of the rational function are obtained using the

frequency data and the frequency derivative data. Once the coefficients of the rational function are

obtained the electric current distribution on the PEC body can be obtained at any frequency within

the frequency range. Using the current distribution, the RCS is obtained. If the frequency

derivative information is known for more than one frequency, a rational function matching all the

samples can be obtained resulting in a wider frequency response.
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The rest of the report is organizedasfollows. In section2, MBPE implementationfor

EFIE is described.Numerical resultsfor a squareplate, a cubeand a spherearepresentedin

section3. The numericaldataarecomparedwith exactsolutionover thebandwidth.CPUtime

andstoragerequirementsaregivenfor eachexample.Concludingremarkson theadvantagesand

disadvantagesof MBPE aregivenin section4.

2. MBPE Implementation for MoM

Consider an arbitrarily shaped PEC body shown in Figure 1. For RCS calculations, a plane

wave is assumed to be incident at an angle (% _i) • At the surface of the PEC body the total

tangential electric field is zero. The total tangential field in terms of the scattered and incident

fields on the PEC body is therefore written as

Escat + Ein c = 0 (1)

In a subdomains MoM approach, the PEC surface is divided into triangles, rectangles, or

quadrilaterals. In this paper we follow the triangular subdomain approach reported in [7]. Writing

Escat in terms of the equivalent electric current distribution J on the surface of the PEC object

and applying the Galerkin's method, a set of simultaneous equations are generated and are written

in a matrix equation form as

where
Z(k)I(k) = V(k)

Jk'q°ff4n _fjexp(_ jkR)ds'dsZ(k) - jjT •

f f (V'T) f f (v" . j)exp(-jkR) ds'dsR

(2)

(3)



and

V(k) = f_T oEincds (4)

T is the vector testing function, k is the wavenumber at frequency f, and rio is the intrinsic wave

impedance. R is the distance between the source point and the observation point. V' indicates the

del operation over the source coordinates and similarly ds" indicates the surface integration over

the source coordinates. In equation (2), Z(k) is a complex and dense matrix. V(k) is the excitation

column vector. Equation (4) is calculated using a harmonic plane wave

Ein c = Eiexp[j(kxX + kyy + kzz)] (5)

where

E i = XExi + yEy i+ ZEzi

Exi = cos0icost_icosO_- sin0isina

and

(6)

(7)

Ey i = cosOisint_icosa + cost_isina (8)

Ezi = -sin0icostx (9)

k x = ksinOicost_i (10)

ky = ksinOisint_ i (11)

k z = kcos0i (12)

0t represents the polarization angle of the incident field. When o_ = 0, the incident field



correspondsto H-Polarizationand when ct = x/2, then the incident field correspondsto

E-Polarization.The matrix equation (2) is solved at any specific frequency fo (with wavenumber

ko) either by a direct method or an iterative method. The solution of equation (2) gives the

unknown current distribution, which is used to obtain the scattered electric field. The radar cross

section is given by

lim 41tr 21E fscat(r)12= (13)
r ---_ *o IEinc (r)l 2

The RCS given in equation (13) is calculated at one frequency. If one needs RCS over a

frequency range, this calculation is to be repeated at different frequency values. Instead MBPE

can be applied for rapid calculation of RCS over a frequency range. MBPE technique involves

expanding the unknown coefficient vector as a rational function. The coefficients of the rational

function are obtained by matching the function and its frequency derivatives of the function at one

or more frequency points.

The solution of equation (2) at any frequency fo gives the unknown current coefficient

column vector l(ko), where ko is the free space wavenumber atfo. Instead l(k) can be written as a

rational function,

PL(k)
I(k) - (14)

QM(k)

where

PL(k) = a o + alk + a2 k2 + a3 k3 + .................. + aL kL

QL(k) = b o + blk + b2 k2 + b3 k3 + .................. + bM kM



bo is set to 1 as the rational function can be divided by an arbitrary constant. The coefficients of

the rational function are obtained by matching the frequency derivatives of I(k). If equation (14) is

differentiated t times with respect to k, the resulting equations can be written as[6]

IQM = PL

I'QM + IQM" = PL"

I"QM + 2I'QM" + IQM'" = PL"

3I'r_ " IQM'" PL""I'"QM + 3I"QM" + _M + =

i(t)QM+tl(t_l)Q_) + .............. +Ct, t_ml(m)Q(t-m) + ................. + IQ(_t ) = p_t)

r_
where

_'r, s s! (r - s) [
is the binomial coefficient. The system of (t+l) equations provides the

information from which the rational function coefficients can be found if t > L + M + 1. If the

frequency derivatives are available at only one frequency fo, the variable in the rational function

can be replaced with (k - ko) i.e.,

PL(k - ko)
I(k) - (15)

QM(k - ko)

and the derivatives can be evaluated at k = k o . The coefficients of the rational function can be

obtained from the following equations:

a o = I(ko) (16)
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where I m -
I (m)

m_
_ m. For example for a rational function with L=5 and M=4, the matrix equation

can be written as

-1 0 0 0 0 -I o 0
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-16-15 _b,u

11

12

13

14

= 15

16

17

18

I 9

(18)

This approach is same as the Pad_ approximation given in [8]. This method has been

successfully applied to electromagnetic scattering from cavity-backed apertures using a hybrid

finite element and method of moments technique[9].

If the frequency derivatives are known at more than one frequency, then the expansion about

k=k o cannot be used and the system matrix to solve the rational function coefficients takes a

general form. For the sake of simplicity, only a two frequency model is presented here. Assume

that at two frequencies, f/(with free space wavenumber kl) and f2 (with free space wavenumber
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k2), four derivatives are evaluated at each frequency. Hence 10 samples of data are available (2

frequency samples and a total of 8 frequency derivative samples) to form a rational function with

L=5 and M=4

a o + alk + a2 k2 + a3 k3 + a4 k4 + a5 k5

l(k) = (19)
1 + blk + b2 k2 + b3 k3 + b4 k4

Equation (19) can be written as

(1 + blk + b2 k2 + b3 k3 + b4k4)I(k) = a o +alk + a2 k2 + a3 k3 + a4k 4 + a5 k5 (20)

Differentiating equation (20) four times at each frequency, the matrix equation for the solution of

the coefficients of the rational function (equation (19)) can be written as

2 3 4 5 (0)/I /(0)b2 /(0)b3 i(0)/4
1 k 1 k 1 k I k I kl 11 '_1 "1 '_l "1 '_1 "1 "_1

01 2k 1 3k21 4k31 5k_ M27 M28 M29 M2 lO

0 0 2 6k 1 12k21 20k31 M37 M38 M39 M3 10

0 0 0 6 24k I 60k_ M47 M48 M49 M4 10

0 0 0 0 24 120k I M57 M58 M59 M5 l0

2 3 4 5 .(0)t. ^ l(0)b2 l(0)b3 /(0)b4
1 k 2 k 2 k 2 k 2 k2 12 '_z "2 '_2 -2 "_2 "2 '_2

0 1 2k 2 3k_ 4k_ 5k42 M77 M78 M79 M7 10

0 0 2 6k 2 12k_ 20k_ M87 M88 M89 M8 10

0 0 0 6 24k 2 60k_ M97 M98 M99 M9 10

0 0 0 0 24 120k2 M10 7 M10 8 M10 9 MI0 10

a o

a 1

a 2

a3

a 4

a 5

bl

b2

b 3

b 4

-- °

i(o)
1

(1)
I1

i_21

i(3)
!

i_4)

I_ O)

(1)
I 2

1(22)

1(23)

(21)

where I(1m)

m

d m l_m)_ _-_l(k)[k=k _dk ml(kllk=k' ' d
and
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_(1) 1(10))M27 = -(11 k I +

= (1) 2M28 -(11 k 1 + 2I(1°)kl)

(1) 3 (0) 2
M29 =--(I 1 k 1 +311 k 1)

(1) 4 (0) 3
M2 lO = -(I1 k1+411 kl)

M37 = -(I(12)kl + 2I(11))

= (2) 2 (l)t. _M38 -(11 kl + 411 "1 + 21(1°))

(2) 3 (1) 2 (0)
M39 =-(11 k 1+611 k1+611 k 1)

(2) 4 (1) 3 (0) 2
M3 lO = -(I1 k1+811 kl +1211 kl)

M47 = -(I(13)kl + 3I(12))

(3) 2 (2) 6111))M48 = -(I 1 k 1 + 611 k 1 +

(3) 3 (2) 2 181(ll)kl + 61(lO))M49 = -(I 1 k 1 + 911 k 1 +

(3) 4 (2) 3 36i(11)k21 + 24i(lO)kl)M4 lO = -(I1 kl + 1211 kl +

M57 = -(I(14)kl + 4I(13))

(4) 2 (3)
M58 = -(I 1 k 1 + 811 k 1 + 121(12))

(4) 3 (3) 2 36i(12)kl + 241(lO))M59 = -(11 k 1 + 1211 k 1 +

(4) 4 (3) 3 (2) 2 961(11)kl +241(lO))M5 lo = -(I1 kl + 1611 kl +7211 kl +
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In the above equations, I (t) , the tth derivative can be obtained using the recursive relationship,

[ t qz(q)(k)l(t-q)(k)]
ICt)(k) = Z-l(k) V Ct)- _., Ct, (22)

q=0

z(q)(k) is the qth derivative of Z(k) with respect to k. Similarly v(t)(k) is the tth derivative if

V(k) with respect to k. Ct, q is the binomial coefficient.

The above procedure can be generalized for multiple frequencies with frequency

derivatives evaluated at each frequency to increase the accuracy of the rational function.

Alternatively, the two-frequency-four-derivative model can be used with multiple frequency

windows. As the complexity of the matrix equation to solve for multiple-frequency-multiple

derivative model increase with number of frequency points and number of derivatives taken at

each frequency, the two-frequency-four-derivative model is followed in this report.

3. Numerical Results

To validate the analysis presented in the previous sections, a few numerical examples are

considered. RCS frequency response calculations are done for a square plate, a cube, and a

sphere. The numerical data obtained using MBPE are compared with the results calculated at each

frequency using the triangular patch Method of Moments. We will refer to the latter method as

"exact solution." All the computations reported below are done on a SGI Indigo 2 (with IP 22

processor) computer.

(a) Square Plate:

The first example is a square plate (lcm x l cm) with the incident electric field at

15



0i = 90 ° and _i = 0°" The incident field is E-polarized (0_ = 90°). The square plate is

discretized with 603 unknowns. The frequency response is calculated with one-frequency MBPE

(L=5, and M=4) at 30GHz and using nine frequency derivatives at that frequency. The frequency

response is also calculated with a two-frequency MBPE (L=5, M=4) atfl=25GHz andf2=35GHz

and using four frequency derivatives at each frequency. The frequency responses obtained are

plotted in figure 2 along with the exact solution calculated at each frequency over the frequency

range 15GHz to 45GHz. The one-frequency MBPE took 1688 secs to generate the moments,

whereas two-frequency MBPE took a total of 3060 secs to generate moments at both frequencies.

The exact solution took 22,258 secs to calculate 31 frequency values from 15GHz to 45GHz. It

can be seen that both one-frequency MBPE and two-frequency MBPE give accurate results over

the frequency range 15GHz to 45GHz. One-frequency MBPE seems to compute the results much

faster than the exact solution and two-frequency MBPE.

(b) Cube:

RCS frequency response of a PEC cube (lcmXlcmXlcm) is computed for normal

incidence. One-frequency MBPE with L=5 and M=4 at fo=15GHz is used to calculate the

frequency response. Frequency response is also calculated using the two-frequency MBPE with

L=5 and M=4 at fl=llGHz and f2=19GHz. The frequency responses obtained are plotted in

Figure 3 along with the exact solution calculated at each frequency over the frequency range

2GHz to 22GHz. The one-frequency MBPE took 1143 secs of CPU time to generate the

moments, whereas the two-frequency MBPE took a total of 2066 secs to generate the moments at

both frequencies. The exact solution took 10,500 secs to calculate RCS at 21 frequency values

from 2GHz to 22GHz. It can be seen from Figure 3 that the one-frequency MBPE gives accurate
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solution over the frequencyrange 2GHz to 22GHz, whereasthe two-frequencyMBPE gives

accuratesolutionoverthefrequencyrange5GHzto 20GHz.It canalsobeseenthatone-frequency

MBPE is fasterthanthetwo-frequencyMBPE andexactsolution.

(C)Sphere

As a third example, a PEC sphereof radius 0.318cm is considered.The sphereis

discretizedinto 248 triangularelements.OnefrequencyMBPE with L=5 and M=4 atfo=20GHz

is used to calculate the frequency response. Two-frequency MBPE with L=5 and M=4 is at

fl=15GHz and f2=25GHz is also used to calculate the frequency response. The frequency

response over the frequency range is plotted in Figure 4 along with the exact solution calculated

with 1GHz frequency interval over the bandwidth. The one-frequency MBPE took 580 secs to

generate the moments, whereas two-frequency MBPE took a total of 1040 secs to generate the

moments at both frequencies. The exact solution took 7905 secs to calculate RCS at 31 frequency

values from 5GHZ to 35GHz. It can be seen from Figure 4 that the one-frequency MBPE and

two-frequency MBPE gives accurate solution over the frequency

Comment on Storage: In all the above examples, when solving a matrix equation, one needs to

store a complex, dense matrix Z(ko) of size N x N for exact solution at each frequency. In one-

frequency MBPE one needs to store (L+M) complex dense matrices (z(q)(ko),

q=1,2,3 .... (L+M)) of size N × N, along with the matrix Z(ko) of size N x N. For electrically

large problems, this could impose a burden on computer resources. This problem can be

overcome by storing the derivative matrices, z(q)(ko) out-of-core, as the derivative matrices are
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requiredonly for matrix-vectormultiplication. In two-frequencyMBPE,oneneedsto storeonly

(L + M-2 1) derivative matrices of size N xN along with the matrix Z(k) of size N ×N at

each frequency. Once the moments are calculated at one frequency, the memory used for the

matrices can be reutilized to generate moments at the second frequency, hence reducing the

burden on computer memory requirements. In all the numerical examples presented with L=5 and

M=4, one-frequency MBPE had to store 10 matrices of size N x N, whereas two-frequency

MBPE had to store only 5 matrices of size N x N at each frequency. The memory to store the

matrices at one frequency is reutilized to store the matrices at the second frequency. Hence, even

though the CPU timings for two-frequency MBPE is more than the one-frequency MBPE, but if

computer memory is a constraint, however, it is advisable to use two-frequency MBPE as an

alternative to one-frequency MBPE.

4. Concluding Remarks

An implementation of MBPE for frequency domain Method of Moments is presented. The

RCS frequency response for different PEC objects such as a square plate, cube, and sphere are

computed and compared with the exact solution. From the numerical examples presented in this

report, MBPE is found to be superior in terms of the CPU time to obtain a frequency response. It

may also be noted that although calculations are done at one incidence angle for all the examples

presented, with a nominal cost, the frequency response at multiple incidence angles can also be

calculated. It is also observed from the numerical examples that the one-frequency MBPE is

superior to two-frequency MBPE in terms of the CPU timings, whereas two-frequency MBPE is

superior in terms of the computer memory requirements. As MBPE results in a rational function
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onecanextractthe poles and zeros of this function and can construct the time response, which is

useful in microwave imaging applications.

In one-frequency MBPE the frequency response is valid over a certain frequency range. In

two-frequency MBPE, the two frequency values have to be chosen so as to get an accurate

frequency response between the two frequency values. To get a wide frequency response for any

problem, either one- or two-frequency MBPE models have to be used with different frequency

values to cover the complete frequency range. To be accurate over all frequency ranges a reliable

error criteria should be developed, which can be used to sample the frequency points to apply

MBPE model. Development of such a sampling criteria will make MBPE a very effective tool for

computational electromagnetics.

References

[1] E.K.Miller, L. Medgysi-Mitschang and E.H.Newman(Eds), Computational

Electromagnetics: Frequency domain method of moments, IEEE Press, New York, 1992.

[2] C.R.Cockrell and EB.Beck, "Asymptotic Waveform Evaluation (AWE) technique for

frequency domain electromagnetic analysis," NASA Technical Memorandum 110292, 1996.

[3] C.J.Reddy and M.D.Deshpande, "Application of AWE for frequency response calculations

using Method of Moments," NASA Contractor Report 4758, October 1996.

[4] C.J.Reddy and M.D.Deshpande, "Frequency response calculations of input characteristics

of cavity-backed aperture antennas using AWE with hybrid FEM/MoM technique," NASA

Contractor Report 4764, February 1997.

[5] G.J.Burke, E.K.Miller, S.Chakrabarthi and K.Demarest, "Using model-based parameter

estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE

19



Trans. Magnetics, Vol.25, pp.2807-2809, July 1989.

[6] E.K.Miller and G.J.Burke, "Using model-based parameter estimation to increase the

physical interpretability and numerical efficiency of computational electromagnetics,"

Computer Physics Communications, Vol.68, pp.43-75, 1991.

[7] S.M.Rao, "Electromagnetic scattering and radiation of arbitrarily shaped surfaces by

triangular patch modelling," Ph.D. Thesis, The University of Mississippi, August 1980.

[8] E.Chiprout and M.S.Nakhla, Asymptotic Waveform Evaluation, Kulwar Academic

Publishers, 1994.

[9] C.J.Reddy and M.D.Deshpande, "Application of AWE along with a combined FEM/MoM

technique to compute RCS of cavity-backed aperture in an infinite ground plane over a

frequency range," NASA Contractor Report 97-206261, December 1997.

20



Z

__1 00 (x'y'z)

X
v

Incident Field /

(0i'_ Z

3D PEC object

Figure 1 Arbitrarily shaped three dimensional PEC object

21



0

_1_ -lo

-20

-30

L-- -
fo=30GHzfl=24GHz f2=36GHz

,,,,, !,,,,
20 25 30 35

Frequency(GHz)

Figure 2 RCS frequency response of a square plate(lcmXlcm)

22



10

0

mmm Exact Solution

Two-freq MBPE

One-freq MBPE

fl=l 1GHz fo=l 5GHz f2= 19GHz

-40 2 4 6 8 10 12 14 16 18 20 22

Frequency(GHz)

Figure 3 RCS frequency response of a PEC cube (lcmXlcmXlcm)

23



0

-5

-10

-15

-20

-25

-30

-35
5

1111 • Exact Solution
Two-freq MBPE I

One-freq MBPEJ

fl=15GHz fo =20GHz f2 =25GHz

10 15 20 25 30

Frequency(GHz)

35

Figure 4 RCS frequency response of a PEC sphere (radius=O.318cm)

24





REPORT DOCUMENTATION PAGE _:o_o,o,,_
OMB No. 07704-0188

Public reporting 10urd<mfor this collection of infor_,,¢,i;u_ is estimated to average 1 hour per response, including the time for reviewing instructions, sesrching existing data sources
gathering and maJntan ng the data needed, and completing and reviewing the co_l_n of information. Send comments regarding this burden estimate or any other aspect of thi_
collection of information, including suggestions for reducing this burden, to Washington Hea0qusrtar8 Services, Directorate for Inforrnatio_ Operations and Reports, 1215 Jeffersor
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washingtoql, DC 20503.

1. AGENCY USE ONLY (Lew,_ blank 12.REPORT DATE 3. REPORT TYPE AND DATES COVERED

I March 1998 Contractor Report
4. TITLE AND Sbtsl ii LE 5. FUNDING NUMBERS

Application of Model Based Parameter Estimation for RCS Frequency
Response Calculations Using Method of Moments NCC 1-231

6. AUTHOR(S)

C. J. Reddy

7. PERFORM|;';G ORGANIZATION NAME(S) AND ADDRESS(ES)

Hampton University
Hampton, Virginia 23668

9. _ONSORING/MONITORING AGENCY NAME(B) AND ADDRESB(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-2199

11. SUPPLEMENTARY NO_'._

Langley Technical Monitor: Fred B. Beck

522-11-41-02

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/CR- 1998-206951

128. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 32 Distribution: Nonstandard
Availability: NASA CASI (301) 621-0390

13. A_iHACT (Max/mum 200 _._)

12b. DISTRIBUTION CODE

An implementation of the Model Based Parameter Estimation (MBPE) technique is presented for obtaining the

frequency response of the Radar Cross Section (RCS) of arbitrarily shaped, three-dimensional perfect electric
conductor (PEC) bodies. An Electric Field Integral Equation (EFIE) is solved using the Method of Moments
(MoM) to compute the RCS. The electric current is expanded in a rational function and the coefficients of the

rational function are obtained using the frequency derivatives of the EFIE. Using the rational function, the electric

current on the PEC body is obtained over a frequency band. Using the electric current at different frequencies, RCS

of the PEC body is obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere
are presented over a bandwidth. Good agreement between MBPE and the exact solution over the bandwidth is
observed.

14. SUBJECT I ,-HMS

Model Based Parameter Estimation (MBPE), Pade Approximation, Method of

Moments (MoM), Radar Cross Section

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-O1-28C-.%%q0

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

29
16. PRICE CODE

A03

20. UMITATION
OF ABSTRACT

Standard Form 298 (Rov. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


